Deterministic composite nanophotonic lattices in large area for broadband applications

نویسندگان

  • Jolly Xavier
  • Jürgen Probst
  • Christiane Becker
چکیده

Exotic manipulation of the flow of photons in nanoengineered materials with an aperiodic distribution of nanostructures plays a key role in efficiency-enhanced broadband photonic and plasmonic technologies for spectrally tailorable integrated biosensing, nanostructured thin film solarcells, white light emitting diodes, novel plasmonic ensembles etc. Through a generic deterministic nanotechnological route here we show subwavelength-scale silicon (Si) nanostructures on nanoimprinted glass substrate in large area (4 cm2) with advanced functional features of aperiodic composite nanophotonic lattices. These nanophotonic aperiodic lattices have easily tailorable supercell tiles with well-defined and discrete lattice basis elements and they show rich Fourier spectra. The presented nanophotonic lattices are designed functionally akin to two-dimensional aperiodic composite lattices with unconventional flexibility- comprising periodic photonic crystals and/or in-plane photonic quasicrystals as pattern design subsystems. The fabricated composite lattice-structured Si nanostructures are comparatively analyzed with a range of nanophotonic structures with conventional lattice geometries of periodic, disordered random as well as in-plane quasicrystalline photonic lattices with comparable lattice parameters. As a proof of concept of compatibility with advanced bottom-up liquid phase crystallized (LPC) Si thin film fabrication, the experimental structural analysis is further extended to double-side-textured deterministic aperiodic lattice-structured 10 μm thick large area LPC Si film on nanoimprinted substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanophotonic Filters and Integrated Networks in Flexible 2D Polymer Photonic Crystals

Polymers have appealing optical, biochemical, and mechanical qualities, including broadband transparency, ease of functionalization, and biocompatibility. However, their low refractive indices have precluded wavelength-scale optical confinement and nanophotonic applications in polymers. Here, we introduce a suspended polymer photonic crystal (SPPC) architecture that enables the implementation o...

متن کامل

Resonant Nanophotonic Spectrum Splitting for Ultrathin Multijunction Solar Cells

We present an approach to spectrum splitting for photovoltaics that utilizes the resonant optical properties of nanostructures for simultaneous voltage enhancement and spatial separation of different colors of light. Using metal-insulator-metal resonators commonly used in broadband metamaterial absorbers we show theoretically that output voltages can be enhanced significantly compared to single...

متن کامل

Fabrication of the funnel-shaped three-dimensional plasmonic tip arrays by directional photofluidization lithography.

Plasmonics allow localization of an electromagnetic (EM) field into nanoscale "hotspots", a feature that is of technological significance due to potential applications related to spectroscopic sensing and nanofocusing. In relation to this, many researchers have sought to fabricate metallic nanostructures with sharp edges, as they provide much higher EM field enhancement compared with rounded st...

متن کامل

Tunable Defect Mode in One-Dimensional Ternary Nanophotonic Crystal with Mirror Symmetry

In this paper, the properties of the defect mode in the photonic band gap ofone-dimensional ternary photonic crystals containing high temperature superconductorlayer (SPCs) have been theoretically investigated. We considered the quasi-periodiclayered structures by choosing two order of ternary Thue-Morse structures with mirrorsymmetry. We investigated the transmission spectra of these structure...

متن کامل

Determination of Composite System Adequacy Equivalents Using a Reduction Technique: a Case Study on a Regional Electric Company

Reliability evaluation of a large-scale composite power system faces to numerous events/outage and consequently imposes an extensive burden of calculations. In order to simplify the problem, determination of an equivalent system for large-scale power system is inevitable. This paper proposes a framework as reduction technique to separate a composite power system to three areas: external area, o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016